(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
g(s(x), y) →+ g(x, +(y, s(x)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x)].
The result substitution is [y / +(y, s(x))].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(0') → 1'
f(s(x)) → g(x, s(x))
g(0', y) → y
g(s(x), y) → g(x, +'(y, s(x)))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
g(s(x), y) → g(x, s(+'(y, x)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(0') → 1'
f(s(x)) → g(x, s(x))
g(0', y) → y
g(s(x), y) → g(x, +'(y, s(x)))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
g(s(x), y) → g(x, s(+'(y, x)))
Types:
f :: 0':1':s → 0':1':s
0' :: 0':1':s
1' :: 0':1':s
s :: 0':1':s → 0':1':s
g :: 0':1':s → 0':1':s → 0':1':s
+' :: 0':1':s → 0':1':s → 0':1':s
hole_0':1':s1_0 :: 0':1':s
gen_0':1':s2_0 :: Nat → 0':1':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
g,
+'They will be analysed ascendingly in the following order:
+' < g
(8) Obligation:
TRS:
Rules:
f(
0') →
1'f(
s(
x)) →
g(
x,
s(
x))
g(
0',
y) →
yg(
s(
x),
y) →
g(
x,
+'(
y,
s(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
g(
s(
x),
y) →
g(
x,
s(
+'(
y,
x)))
Types:
f :: 0':1':s → 0':1':s
0' :: 0':1':s
1' :: 0':1':s
s :: 0':1':s → 0':1':s
g :: 0':1':s → 0':1':s → 0':1':s
+' :: 0':1':s → 0':1':s → 0':1':s
hole_0':1':s1_0 :: 0':1':s
gen_0':1':s2_0 :: Nat → 0':1':s
Generator Equations:
gen_0':1':s2_0(0) ⇔ 0'
gen_0':1':s2_0(+(x, 1)) ⇔ s(gen_0':1':s2_0(x))
The following defined symbols remain to be analysed:
+', g
They will be analysed ascendingly in the following order:
+' < g
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':1':s2_0(
a),
gen_0':1':s2_0(
n4_0)) →
gen_0':1':s2_0(
+(
n4_0,
a)), rt ∈ Ω(1 + n4
0)
Induction Base:
+'(gen_0':1':s2_0(a), gen_0':1':s2_0(0)) →RΩ(1)
gen_0':1':s2_0(a)
Induction Step:
+'(gen_0':1':s2_0(a), gen_0':1':s2_0(+(n4_0, 1))) →RΩ(1)
s(+'(gen_0':1':s2_0(a), gen_0':1':s2_0(n4_0))) →IH
s(gen_0':1':s2_0(+(a, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
0') →
1'f(
s(
x)) →
g(
x,
s(
x))
g(
0',
y) →
yg(
s(
x),
y) →
g(
x,
+'(
y,
s(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
g(
s(
x),
y) →
g(
x,
s(
+'(
y,
x)))
Types:
f :: 0':1':s → 0':1':s
0' :: 0':1':s
1' :: 0':1':s
s :: 0':1':s → 0':1':s
g :: 0':1':s → 0':1':s → 0':1':s
+' :: 0':1':s → 0':1':s → 0':1':s
hole_0':1':s1_0 :: 0':1':s
gen_0':1':s2_0 :: Nat → 0':1':s
Lemmas:
+'(gen_0':1':s2_0(a), gen_0':1':s2_0(n4_0)) → gen_0':1':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':1':s2_0(0) ⇔ 0'
gen_0':1':s2_0(+(x, 1)) ⇔ s(gen_0':1':s2_0(x))
The following defined symbols remain to be analysed:
g
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol g.
(13) Obligation:
TRS:
Rules:
f(
0') →
1'f(
s(
x)) →
g(
x,
s(
x))
g(
0',
y) →
yg(
s(
x),
y) →
g(
x,
+'(
y,
s(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
g(
s(
x),
y) →
g(
x,
s(
+'(
y,
x)))
Types:
f :: 0':1':s → 0':1':s
0' :: 0':1':s
1' :: 0':1':s
s :: 0':1':s → 0':1':s
g :: 0':1':s → 0':1':s → 0':1':s
+' :: 0':1':s → 0':1':s → 0':1':s
hole_0':1':s1_0 :: 0':1':s
gen_0':1':s2_0 :: Nat → 0':1':s
Lemmas:
+'(gen_0':1':s2_0(a), gen_0':1':s2_0(n4_0)) → gen_0':1':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':1':s2_0(0) ⇔ 0'
gen_0':1':s2_0(+(x, 1)) ⇔ s(gen_0':1':s2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':1':s2_0(a), gen_0':1':s2_0(n4_0)) → gen_0':1':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
f(
0') →
1'f(
s(
x)) →
g(
x,
s(
x))
g(
0',
y) →
yg(
s(
x),
y) →
g(
x,
+'(
y,
s(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
g(
s(
x),
y) →
g(
x,
s(
+'(
y,
x)))
Types:
f :: 0':1':s → 0':1':s
0' :: 0':1':s
1' :: 0':1':s
s :: 0':1':s → 0':1':s
g :: 0':1':s → 0':1':s → 0':1':s
+' :: 0':1':s → 0':1':s → 0':1':s
hole_0':1':s1_0 :: 0':1':s
gen_0':1':s2_0 :: Nat → 0':1':s
Lemmas:
+'(gen_0':1':s2_0(a), gen_0':1':s2_0(n4_0)) → gen_0':1':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':1':s2_0(0) ⇔ 0'
gen_0':1':s2_0(+(x, 1)) ⇔ s(gen_0':1':s2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':1':s2_0(a), gen_0':1':s2_0(n4_0)) → gen_0':1':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)